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Environmental Factors Affecting
Chemoreceptors: An Overview
by Bruce P. Halpern*

Vertebrate olfactory and gustatory receptors are necessarily exposed to the fluid which
contains their relevant chemosensory environment. In terrestrial mammals, the nasal airways
serve as protective accessory tissues for the olfactory receptors, but taste receptors in all
vertebrates and olfactory receptors in fish are directly exposed to the liquids which bring
chemosensory stimuli to them. The differentiated epithelial cells which form taste buds and the
specialized neurons which are the vertebrate olfactory receptors are constantly replaced in
normal adult animals, suggesting that chemosensory function per se is damaging to the
receptors. Organic and sulfur-containing air pollutants may be among those which adversely
affect olfactory receptors, but adequate data are not available. Surfactants and heavy metals can
produce physiological and/or morphological damage in gustatory receptors. Some heavy metals
are concentrated in saliva, a liquid which interacts closely with taste receptors. A failure to
evaluate human chemosensory function in relation to potential chemosensory toxicants accounts
for the present inability to specify the incidence or severity of the problem.

Introduction
Interaction with the chemical environment is the

ultimate fulfillment for olfactory and taste recep-
tors. As is often the case with such intimate and
intense interaction, the results, while stimulating,
can be damaging or destructive. Nonetheless, the
continued presence and operation of these chemo-
receptors indicate that mechanisms are available to
cope with whatever morphological and/or physiolog-
ical damage may be produced by common terres-
trial and aquatic chemosensory environments. Addi-
tional environmental hazards derived from human
culture (1-3) can, however, overwhelm the survival
mechanisms of chemoreceptors (4, 5).

Olfaction
For terrestrial vertebrates, the environmental

challenges to taste and olfactory receptors are
rather different. Chemicals in solution or suspen-
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sion in air comprise the major chemosensory haz-
ards for olfaction in terrestrial forms. Since solids
and liquids need not arrive at the receptor sheet,
olfactory receptors can be so located that "acces-
sory tissues" of the nose permit access only to
gases. In mammals, in particular in humans, the
sharp bends, narrow passages and extensive cili-
ated mucosal surface of the turbinates and septum
of the nasal airways cause almost all particles
larger than 5 ,um to be deposited before they reach
the olfactory receptors (6), which are located on the
most superior turbinate and associated septum.
During normal breathing, little of each inspiration
flows above the middle turbinate, although a more
even flow occurs during expiration. The large
mucosal surface extending from the anterior nares
absorbs over 90% of water-soluble vapors present
in inspired air. Considerable adsorption of water-
insoluble gases also occurs. Thus, the air flow
pattern and mucosal sorption tend to protect the
olfactory receptors against exposures to high con-
centrations of chemicals (6-9). Finally, the mucus-
containing surface liquid and the rich blood supply
of the nasal airways modulate the temperature and
control the relative humidity of inspired air such
that air temperature at the superior turbinate is
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within +5°C of 3700, and the relative humidity is
100%, for a wide range of ambient temperatures
(6). The resulting "constant temperature and humid-
ity chamber" for the olfactory receptors, which are
also well protected from most nonvapor input,
might seem to be a benign if not extraordinarily
safe environment.

If the olfactory receptors could interact with the
chemosensory environment without incurring dam-
age to themselves, we might expect these special-
ized neurons (10, 11) to be relatively static struc-
tures. However, many studies have found that the
olfactory receptor cells are constantly being replaced
(10, 12, 13), and that the entire receptor neuron can
regenerate from basal cells in adult vertebrates,
including birds and mammals. The regeneration
produces not only morphological replacement but
also functional recovery (14). These observations
indicate that olfactory function is inherently damag-
ing to the receptor. That is, the usual finding in
healthy animals which have not been subjected to
an intentionally polluted environment is constant
replacement of the mucosal portion of the olfactory
receptors. This receptor turnover, which must
have a considerable metabolic cost, can provide an
adaptive advantage only if it is necessary for
satisfactory olfactory function.

Olfactory damage due to pollutants may result
from an additional burden added to the challenge of
normal olfaction. Structural and functional damage
to the olfactory epithelium by ether or chloroform
vapor was confirmed in the 1960s (5). Exposures to
a sufficient concentration of either vapor for 6-10
min produced morphological damage, but the same
concentrations for less than 4 min resulted in only a
brief depression of function. However, ether and
chloroform are not common environmental pollu-
tants (3). Therefore, they may be useful research
tools and possible model agents rather than prob-
lem chemosensory toxicants.

Sulfur compounds (2) and formaldehyde vapor (1)
are common air pollutants. Olfactory deficits are
reported to occur in humans exposed for some
hours to formaldehyde vapor (15), but satisfactory
psychophysical documentation is lacking. If formal-
dehyde vapor were an occupational hazard only for
plastic, wood and textile workers, as well as
anatomists, formaldehyde olfactory toxicity would
be a potential problem for only a small segment of
the population (1). However, the development and
commercial use of formalin-based synthetic poly-
mers for phenolic and urea resins have brought the
challenge of this possible chemosensory toxicant to
the general population (1). The problem may be
more serious in urban settings, since formaldehyde
occurs in gasoline and diesel engine exhaust, and as
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a photodecomposition product in smog. Irritant
actions on the eyes and pulmonary airways are
observed at air concentrations of formaldehyde no
more than two to three times that needed to
recognize by smell the presence of formaldehyde.
Indeed, it is recommended that if a formaldehyde
odor is consistently recognized in one's environ-
ment, a problem is likely to exist (1). Of course, if
formaldehyde damages olfactory receptors, the
recommended bioassay would be of limited value.
Thus, an adequate evaluation of the severity of the
effects of formaldehyde on olfaction is needed, with
reliable dose-response profiles.

Irritant properties of sulfur dioxide are widely
recognized (16). Although the presence of such
irritants does increase airway mucus secretion (17),
sulfur dioxide concentrations of 1 ppm or more
impair nasal mucous flow (6). Surprisingly, contin-
uous exposure to sulfuric acid aerosols with concen-
trations from 150 to 502 mg/m3 for 7 days produced
no nasal septum (or pulmonary) damage in rats or
rhesus monkeys (18). Lesions were seen in guinea
pigs; in mice, somewhat longer exposures resulted
in ulcerations in the larynx and upper trachea.
Since the highest concentrations in this study were
several times that found in industrial pollutant-
induced smog, generalization ofsulfur-induced nasal
damage from rodents to priinates may be contrain-
dicated. No evaluation of olfactory effects was
made.
The central nervous system target of the olfac-

tory receptor neuron axons, the olfactory bulb,
apparently shows structural alterations in the rat
as a function of the chemicals in inspired air (19).
Initial reports suggested that bulb damage due to
overstimulation was being observed. However,
replication of the changes using the original stimu-
lus paradigm has been difficult. Some reports
suggest that the anatomical changes are signs of
normal function, with unchanged olfactory bulb
regions reflecting a pathological state due to
insufficient input from the olfactory receptors (19).
Finally, some investigators, while finding transient
behavioral changes, have observed no alterations in
olfactory bulb morphology (20).

In general, olfactory systems of terrestrial ani-
mals respond to, and permit adaptive behavior in
relation to, very low concentrations of a broad
range of molecules in air (21). This high and
differential sensitivity uses "accessory tissues," the
nonolfactory portions of the nasal airways, to
humidify, temperature control and desaturate inspired
air. The olfactory receptor neurons undergo con-
stant turnover, and the entire neuron can develop
in adult mammals from basal cells. These protective
and replacement mechanisms may be insufficient to
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handle culturally produced air pollution. Formalde-
hyde vapor is potentially a serious olfactory recep-
tor toxicant, but more data are needed. More
broadly, any form of air pollution which adversely
alters nasal mucosa, such as pH changes (3) or
origanic vapors (1), may also affect the nasal chemo-
receptors.
The postsynaptic neurons of the olfactory bulb

show histochemical changes following prolonged
inspiration of air containing sufficient concentra-
tions of a range of chemicals. Whether these
changes, or their absence, are pathological is not
understood.

Taste
Taste receptors of vertebrates occur in loci

where contact with environmental chemicals in
aqueous solution is a likely event (22). For fully
aquatic forms such as fish, these loci include, in
addition to the mouth, the exterior surface of the
body, and sometimes appendages literally covered
with taste buds (4, 23). Other specialized "contact
chemoreceptors," such as portions of the lateral line
system and scattered chemoreceptors, are also
found in fish and elasmobranchs. However, the
receptor cells of these latter systems do not resem-
ble those of taste buds, and the innervation may be
either cranial or spinal nerves.

Since the fluid in which fish live is a liquid,
olfaction and taste share the same stimulus solvent,
and both can be affected by water pollution. For
example, olfactory epithelium damage in fish due to
exposure to petroleum in water has been reported
(24).

Terrestrial vertebrates have taste receptors only
within the mouth and pharynx. Adult humans and
other mammals usually have taste buds on the
tongue (generally on papillae located on the dorsal
surface and sides of the tongue), the soft palate,
and the epiglottis (22, 25). Extensive protective
and filtering accessory tissues comparable to the
nasal airways are not found for vertebrate taste
receptors. At best, a mucosal layer (26) [covering
external taste buds in aquatic forms (23, 27)] or a
mixture of saliva and mucus (oral and pharyngeal
taste buds) covers the receptor cell complex.

In humans and many other mammals, the tongue
has a relatively thick and nonpermeable keratin
layer (28). However, the keratin becomes very thin
or disappears entirely in the vicinity of taste buds
(25). An opening in the epithelium forms a pore
(28-31) through which liquids, pastes and particles
less than 5 ,um can approach the microvilli which
are the terminations of the receptor cells (32).
These microvilli, and the distal ends of the taste
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bud receptor cells from which they project, are
embedded in a matrix which may be a polysac-
charide-protein mixture (26, 31). The function of
this pore chamber matrix is unknown, but it does
not seem to present a substantial diffusion barrier
(28, 33). However, movement of chemicals from the
pore chamber into either the taste buds cells or
deeper into the taste buds does not readily occur
(28), at least in living mammals (31). With pro-
longed contact, radiolabeled glycine, at least, can
appear deep in the taste bud (34).
The relatively unprotected nature of taste recep-

tors seems unavoidable if rapid but differential
responses are to occur for a wide range of molecules
and ions solvated in aqueous medium. One would
expect that such exposure, which also can include a
temperature range from 0°C to almost 40°C (poten-
tial terrestrial environment ambient range for drink-
ing water sources) and small particle abrasion,
would quickly damage the receptors. This seems to
be the case, since the taste bud receptor cells of
vertebrates undergo constant replacement (28).
These cells continuously develop from epithelial
cells, enter the taste bud, follow a sequence of
differentiation, and disappear. In poikilotherms,
the rate of cell turnover can be relatively slow (12)
and is temperature-dependent. For mammals, a
typical taste bud receptor cell has a life span of 10
days (28).
Water pollution damages taste receptors in fish.

Surface active substances such as detergents appear
to be one important factor (4, 35); heavy metals,
another (36). Mercurials reduce taste stimulus
binding at relatively low concentrations, e.g., 100
p.A1 HgC12. It may be that human taste receptors
are also adversely affected by surfactants to which
they are exposed. Situations such as detergents in
water represent a pollution problem and are recog-
nized as such. However, the surfactant sodium
lauryl sulfate (dodecyl sodium sulfate), which is
added to toothpaste (37), has been demonstrated to
modify human taste perception (38), as does direct
application of dentifrice to the tongue (39).

Saliva is a major component of the environment
of mammalian taste receptors (40). Sufficient varia-
tions in its composition or quantity alter taste
function. Thus, the ionic composition of saliva
affects human taste judgments (29); a reduced
supply modifies taste-dependent behavior (40), leads
to altered neural responses and is associated with
structural changes in taste bud cells (32).
A number of metals and other elements are

concentrated in saliva (41). This phenomenon includes
the heavy metals mercury and copper, and perhaps
lead, as well as the halogen fluorine. It has given
rise to the suggestion that saliva samples be used to
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monitor exposure to metal pollution in humans (41,
42). Heavy metals have a variety of effects on living
organisms (16). With reference to gustation, sali-
vary heavy metal levels may be significant because
taste receptors are sensitive to topical application
of heavy metals (34). For example, 100 ,uM CuCl2
depresses mammalian gustatory neural responses
to sugars and amino acids. Since water supplies can
be contaminated with heavy metals (43), human
ingestion and subsequent salivary concentration is
possible.

In general, the differentiated epithelial cells
which make up vertebrate taste buds have little
protection from the liquid-borne chemical and ther-
mal events which are their stimuli. The constant
and relatively rapid replacement of taste bud cells
suggests a high likelihood of damage. Most gusta-
tory stimuli probably do not penetrate farther than
the taste bud's pore chamber. Surfactants are
known to affect and sometimes damage taste buds,
can occur as pollutants in water supplies, and are
used as additives in oral hygiene products. Saliva
has an important but not fully understood interac-
tion with taste receptors. Since many heavy metals
tend to concentrate in saliva, and taste responses
can be altered or blocked by topical application of
heavy metal solutions, exposure to heavy metal
pollution may lead to gustatory damage.

Overview
Many potential environmental hazards exist for

olfaction and taste. There has been a general failure
to consider or evaluate chemosensory deficits as
potential toxicological problems. The importance of
human chemosensory function, and the many
difficulties which result from chemosensory dys-
function, have been recognized (44), but the inci-
dence of chemosensory toxicants in the environ-
ment is largely unknown. Adequate testing of
chemosensory function as part of industrial medical
screening, and as a component of more general
examinations, is needed. Our present ignorance
may be obscuring a sizeable array of preventable or
correctable chemosensory disorders. An active and
aggressive program is needed to clarify the nature
of environmental factors affecting chemoreceptors.
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